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The orientation of the crystal with respect to rotation 
around the scattering vector was the same for all scans 
at a particular ~ value. The mean path lengths through 
the crystal are therefore the same for all these scans. 
This was not the case for the scans at different 9, 
hence the difference between the average F 2 at the 
two ~, positions. 

We thank Claude Zeyen and Mogens Lehmann for 
constructive discussions. 
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Abstract 

A detailed solution of Kato's equations describing 
the propagation of X-rays or neutrons in a crystal 
containing a statistical distribution of imperfections 
is presented: this solution makes use of propagation 
operators to describe multiple scattering events. Cor- 
rections to Kato's original solution are given which 
have a significant effect, even in the case of crystals 
with a high degree of long-range perfection. The 
present modified solution is applied to experimental 
measurement on parallel plates of silicon with 
different dislocation densities by Olekhnovich, Kar- 
pei, Olekhnovich & Puzenkova [Acta Cryst. (1983), 
A39, 116-122]. The theory reproduces observations 
quite well, in contrast to conclusions reached by 
Olekhnovich et al. on the basis of the original solution. 
It can be inferred that the basic ideas of Kato allow 
for a correct interpretation of diffraction reflectivities 
in highly perfect crystals, where a significant contribu- 
tion from incoherent components of scattered 
intensities must be incorporated. However, the theory 
has to be modified for the case of lower long-range 
perfection: this involves the modification of the 
expressions for the effective correlation lengths that 
enter the theory. 

* Permanent address: Atomic Energy Commission, PO Box 6091, 
Damascus, Syria. 

0108-7673/88/030262-09503.00 

I. Introduction 

Until 1980, extinction was treated by two very 
different approaches. Following the ideas of Darwin 
(1914, 1922), the mosaic model was introduced. In 
such a model, one considers perfectly coherent multi- 
ple scattering within perfect mosaic block, the so- 
called primary extinction, and totally incoherent 
multiple scattering between adjacent blocks, the so- 
called secondary extinction. 

Secondary extinction is therefore described by 
energy coupling equations between the incident and 
diffracted beams (Zachariasen, 1967; Becker & Cop- 
pens, 1974; Kato, 1976), the solution of which is 
difficult due to the boundary conditions imposed by 
the sample. Primary extinction, on the other hand, is 
commonly dealt with through the amplitude coupling 
equations of dynamical theory (Zachariasen, 1945; 
Batterman & Cole, 1964; Authier, 1970) for perfect 
crystals. 

Mosaic theory is quite popular in crystallography, 
and has been successfully applied to many practical 
situations, according in particular to the solution of 
Becket & Coppens (1974, 1975). Despite this success, 
it is physically doubtful, since it separates various 
regions of space discontinuously and arbitrarily. It is 
clear that distortions from perfect periodicity are 
much more subtle. A correct model should contain 
as extreme limits perfect-crystal and mosaic-crystal 
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theories, and should fill the gap between those two 
extremes. 

The gap between pure dynamical and mosaic- 
crystal theories has been filled by Kato (1980a, b), 
hereafter denoted by Ka, b, in a series of two papers 
in which crystal imperfections are treated on a statis- 
tical basis. This theory is based on Takagi-Taupin 
equations for wave propagation in an imperfect crys- 
tal (see, for example, Takagi, 1969; Kato, 1973): 

ODo/OSo = iK-hqP(So, Sh)Dh(So ,  Sh) 
(1) 

3Dh/OSh = iKh~p*(So, Sh)Do(So, Sh), 

where Do and Dh are the amplitudes of the incident 
and scattered waves respectively, 

Kh = ( A a C /  V)Fh. (2) 

h is the wavelength, C the polarization factor, V the 
unit-cell volume, a is 10 -~4 m for neutrons and 0.28 x 
10-14m for X-rays. Fh is the structure factor and So 
and Sh are the coordinates along the incident- and 
scattered-beam directions. The phase term ~o depends 
on the local distortion u(r) as 

~ ( S o ,  Sh) = exp (27rih. u), (3) 

where h is the reciprocal-lattice vector. 
One may write 

Kh = K~, +',Kh," A = 1/1 ~,1, 

where K~ is the imaginary anomalous part, and A the 
extinction length. 

Kato introduces two order parameters E and r: 

E = ( ~ ( S o ,  Sh)) (4) 

is a long-range-order parameter, which plays the role 
of a static Debye-Waller  factor. ( . . . )  means an 
ensemble average over a small volume. ~', the short- 
range-order parameter, is a measure of the phase 
fluctuations, and is defined as follows. We write 

= (~o)+ 3~o = E + 3~. 

The autocorrelation function of the phase q~ is 

((~*(S 0 -- Z, Sh )~ (So ,  Sh) ) = ( ~ * ( S o ,  S h -- Z ) ~ ( S o ,  Sh) ) 

= E 2 + ( 1 - E 2 ) g ( z ) .  

g ( z )  is the intrinsic correlation function, with g(O) = 
1. It is assumed to be real and symmetric in z and to 
decay rapidly. 

oo 

z =  ~ g ( z )  d z  (5) 
0 

is the correlation length of the phase fluctuations, the 
distance above which the phase correlation is lost. 
%, the nth-order correlation length, is defined by 

DO 

% = ~ [g(z)]" dz 
0 

with 
Tn < Tn_I < .  . . < T2 < T. 

Higher-order correlation functions can be defined, 
but at the present stage of theory one only takes into 
consideration pair correlations. More advanced treat- 
ments seem to be at present intractable. 

Taking into consideration only pair correlations, 
Kato obtains two sets of propagation equations. 

(1) The coherent part of the intensities is 

E,-- I(Oo)l 2 , I~h=l(Oh)l 2 , 

where the coherent waves (Do) and (Dh) satisfy the 
following propagation equations: 

3( Vo) / OSo = -½/xe(Vo)+ iK_hE ( Dh) 
(6) 

O(Dh)/OSh = - ½/ze(Dh) + iKhE(Do). 

The effective absorption coefficient/Ze is given by 

iU, e =/d,0 nt- 2 Re (K2)(1- e2)z, (7) 

P,o is the usual absorption coefficient and K 2= KhK_ h. 

(2) The intensities of the incoherent beams are 
defined as follows: 

I / ,= ( I D o l ) -  I(Do)12 = I o -  I~ 
(8) 

IX = <IDol=>- I<D~>12 = I h -  IK 

and satisfy the propagation equations: 

OI~/OSo= " i ~ i --IXelo + 0"-hl h + 0"-h (1 -- E2) l h 
(9) 

OIX/OSh= " i - i --tXel h + Ohio+ O'h(1 -- E2) I~. 

In equations (9), the symbols have the following 
meaning: 

kT, e = p,o+ 2 Re (K2)% (10) 

is the effective absorption for incoherent beams, % 
being the effective correlation length of the phases: 
if F is the correlation length for the fluctuations of 
the beams: 

3Da = Dh- - (Dh) ,  3Do = Do-(Do)  (11) 
$0 

f iX= ~ (SO*(so- Z, Sh)~O.(so, s~)) dz 
o (12) 

% = ( 1 - E 2 ) 7 " +  E 2 F  

and Kato takes for F the value A / E .  
The coupling constants that appear in (9) are 

defined as follows: 

G = 21Khl2re, & h  = 21K-hl2re, 

0"h = 21Khl2r, 0"-h = 21K-hl2r, 

~.2= ~.h~r_h, 0"2= 0"h0"-h" 

(13) 

These six symbols are different in the presence of 
anomalous scattering. If this can be neglected, only 
two quantities remain: 0" and t~. 

The incoherent part of the intensities measures the 
fluctuations of the beams around their average 
amplitude. 
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Equations (6) and (9) are not mutually indepen- 
dent; the coherent intensities I~ and I~, are effective 
sources for the incoherent processes described by (9). 
Though some modifications to the original Kato 
theory will be necessary in the future, it contains a 
crucial idea: the fact that incoherence occurs from 
the coherent beam due to the local imperfections. In 
this paper, the validity of (6) and (9) will not be 
questioned. 

Kato's theory has been applied to silicon crystals 
of various dislocation densities (Olekhnovich et al., 
1983). These authors conclude that even for samples 
of high perfection the theory is inadequate. As the 
Becker-Coppens approach does not work either, 
Olekhnovich et al. conclude that no available theory 
can properly explain integrated untensities for real 
crystals with strong primary extinction. 

It is our purpose to prove that this conclusion is 
based on some inadequacies in Kato's solution to (6) 
and (9). A correct solution, given here, reproduces 
the observations of Olekhnovich et al. rather closely. 

In § II, we consider the properties of the solution 
to (6) and (9). Its application to the experiment of 
Olekhnovich et al. is reported in §III .  (We finally 
discuss some general conclusions which arise from 
this study.) 

II. Solution for a real crystal 

II.1. Boundary conditions 

The boundary conditions for the beams at the sur- 
face of the crystal are crucial. 

It has been shown (Kato, 1976; Becker, 1977) that 
starting from a point source at various points on the 
surface of the crystal one can easily obtain the 
integrated intensities for extended sources by optical 
transforms from spherical to plane waves. 

We therefore consider a point source at the surface, 
and take this point S as origin, for an incident beam 
of unit intensity 

Do=8(Sh). (14) 

It follows from (6) and (9) that the effective absorp- 
tion coefficients are/x~ and/.;~ for the coherent and 
incoherent beams respectively. With this notation, we 
set 

(Do(e, Sh))=O 

(Dh(So, e))= iKhE exp (--I[LeSO) 
(15) 

I~(e, Sh)=O 

I~(  So, ~ ) = I~h12( 1 -- E 2) exp (-/2eSo), 

where e is a distance small with respect to A, but at 
least of dimension z. In other words, r /A ,<  1, an 
implicit assumption of Kato's theory. 

Boundary values (15) are simply the result of 
kinematic theory, averaged over a distance of order 

~'. This is why tZo is replaced by an effective value/xe 
or /2e. Equations (15) are fully consistent with (6) 
and (9), but this result is far from being obvious. 

Furthermore, we shall assume pure Laue-type 
geometry. Let M be the point at which a beam 
originating at S will exit from the crystal (Fig. 1). 

We will suppose that the whole parallelogram 
SmMn belongs to the sample. This approximation 
has been discussed in various circumstances (Becker 
& Coppens, 1974; Becker, 1977; Becker & Dunstetter, 
1984): it is the only case where a general tractable 
solution is possible. The error this assumption intro- 
duces increases with growing scattering angle, but for 
most applications is reasonably small. Moreover, for 
a parallel plate in transmission geometry, the situation 
of Fig. 1 is always true and there is no error. 

II.2. Two limit cases 

II.2(a). We suppose E = 0, thus a complete lack 
of coherence. 

(Dh) = O. 

Equations (9) become 

Olo/cgso= -[/Zo+ 2 Re (~)~]Io+.21~_~1- '~I , ,  
(16) 

Mh/OSh = --[IZ0+ 2 Re (K2)Z]Ih + 2lKhl2~-/o. 
These propagation equations are equivalent to mosaic 
propagation equations (Kato, 1976), and differ from 
the conventional equations for secondary extinction 
(Zachariasen, 1967; Becker & Coppens, 1974). This 
difference was discussed by Becker & Dunstetter 
(1984). In fact, the secondary-extinction theory of 
Kato (1976) contains the correlation length "r2 rather 
than z (see equations 5): this difference leads to one 
of the difficulties with the present Kato statistical 
formulation. 

II.2(b). At the opposite limit, E = 1, with a perfect 
coherence. We retrieve perfect-crystal theory. 

Sh 

S o 

S n 

Fig. 1. Assumed simplified geometry for Bragg diffraction. 
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As a consequence of this discussion, we believe 
Kato's theory to be far more adequate for crystals 
with large E than small E. 

11.3. Definitions 

Let us define the quantities 0o, @h, 40, 4h, 4~ 
and 4~,: 

(Do) = 

(D~) = 

I~= 

I f , =  

I~=  

I~,= 

Equations (6) and 

0o exp [-½/z~(So+ Sh)] 

~bh exp [--½#e(S0 + Sh) ] 

4ioeXp [--~(So+ Sh)] 

4~ exp [-/~e(So'l t- Sh) ] 

4 ;  exp [-/2,(So+ Sh)] 

4~, exp [--/2e(So+ Sh)]. 

(9) simplify as 

(17) 

0~o/ OSo = iK-hE~bh 
(18) 

O~Oh/ OSh = iKhEO0 
~ i 04~/ OSo = tr_h4 h + tr-h (1 -- EE)4 ~h 

(19) 
O4~,/OSh=Crh4o+" ' O'h(1--E2)4~. 

Equations (18) are equivalent to the perfect-crystal 
Takagi-Taupin equations, where Fh has been 
replaced by (FhE). We expect E to be a Gaussian in 
(hkl), inseparable from the usual temperature factor. 
The occurrence of this term might be related to the 
well known observed discrepancy between Debye- 
Waller factors obtained by neutron and X-ray diffrac- 
tion, since E values are expected to be different for 
the samples used in the X-ray and neutron experi- 
ments. It seems that E could only be separated out 
from data analysis by varying the temperature, since, 
in contrast to Debye-Waller factors, it should not 
depend strongly on temperature. 

The solution of (18) leads to 

I ; =  E2lKl2(so/sh) lJ , [2KE(sosh)' /2] l  2 

X exp [--l.te(SO+ Sh)] 
(20) 

I~h = E21KI2lJo[ZKE(soSh)'/2]l ~ 

× exp [-p,~(So+ Sh)], 

where Jo and J~ are Bessel functions of order 0 and 1. 

11.4. Solving equations (19) 

We now solve equations (19) with the help of 
propagation operators (Becker, 1977). 

The solution can be written as follows: L is a linear 
operator (propagator) such that 

SO Sh 

g(So, S h ) = £ ( f ) = 6  "2 [. du [. d v f ( u , v ) .  
0 0 

The action of L is to propagate the scattering events 
from (u, v) to (So, Sh). 

So $h 

4~, - s 2  I I du dv 4~,(u, v) 
0 0 

A . 
= [ 1 - L ] 4 ~ ,  

$o Sh 

= 1 ~ 1 2 ( 1 -  E 2 ) + ~ r - h ( 1  - ~ 2 )  J" I du  dv4~ , (u ,  v) 
0 0 

$h 

+ c r h ( l - E 2 )  I 4•(So, V) dv 
0 

=fo+ f + f2. 

Thus, 

4 ~ , = [ 1 - [ , ] - ' ( f ° + f ' + f  2) (21) 

and the solution is the sum of three terms: 

' = s ° + s ~  + 4 ~  4h 
(22) 

and finally 

We get 

where Io and 11 are modified Bessel functions. 
In order to evaluate 4~, '2, we will make use of a 

theorem which is proved in Appendix A. 
Theorem" Consider the equation 

( 1 - £ ) 4 = / ,  g 
S 0 S h 

= ~ J f ( u , v ) g ( s o - u ,  sh-V)  dudv .  
0 0 

A A A 

L [ f  , g]= L f  * g = f  * Lg 

We first consider f .  We may write 

f =(~.htr_h/lKhl2)4~h, fO. 

As a consequence, we immediately obtain 

4/,  = ( ~ _ ~ / I K . 1 2 ) 4 ~ .  • 4 o 

Similarly for f2: 

f2  = O'h (1 -- E2)4~ * 6(So) 
oo 

2 £ n [ ~ ( S 0 ) ]  ~ -  ~ ( S 0 ) ' t "  O ' ( S h / S o ) ' / 2 I ' [ 2 0 " ( S o S h )  '/2] 
n = 0  

(24) 

(25) 

oo 

4p = ~ £n[fp] ,  p = 0, 1, 2. 
n = O  

For 4 0 (Kato, 1976, 1980c; Becker, 1977), one finds 

40=[KhIZ(1--EZ)Io[2~(SoSh)I/2], (23a) 

which corresponds to the neglect of coherent contri- 
bution, i.e. pure mosaic theory. The intensity in the 
incident beam at So, Sh is obtained as 

4 ° = ~ / ~ h  I Kh 12( 1 -- E 2)(So/sh ),/2 I,[ 26( SoSh ),/2], 

(23b) 
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and 
$h 

~ = , ~ , ( 1 - t r  2) $ y~,(So, v) dv 
0 

+ (~h~h/I ~ 12)~, • [~°SdSo]. 

The first term in (26) was neglected by Kato. 

(26) 

II.5. The physical picture 

Let us try to find a physical picture to the solution 
for the incoherent  intensity. It can be decomposed as 

I~= I~0+ I~ + I~ 2. (27) 

The first term I~ ° corresponds to a purely incoherent  
propagat ion from the surface. This means that some 
phase coherence is lost in the immediate vicinity of S. 

I ~0 = i Kh 12(1 - E 2) IO[2~(SoSh ) 1 / 2 ]  

×exp  [-/~e(So + Sh)]. (28a) 

With a similar expression for the incident beam 

I~ ° = I Kh 12(~/~h )( 1 -- E2)(So/Sh )1/2 I,[ 2~(S0Sh ),/2] 

× exp [ - ~ e ( S o +  Sh)], (28b) 

I~, ~ can be written as 

il c (29) lh = (20"-hre)lh * I~, ° 

and has the following meaning (Fig. 2). 
At the point  (u, v), the diffracted coherent beam 

Uh(U, v) is scattered into the incident direction and 
we assume phase coherence to be lost over a distance 
2%. At a point  within a distance 2"r  e from (u, v) along 
the incident beam, a new scattering occurs where 
phase coherence is lost and from that point the beam 
travels incoherently.  I~, 1 is the sum of all these events 
for variable (u, v). Since we assume re < So, Sh, the 
quanti ty I~, 2 is expressed by 

Sh 

I~,2= O'h(1-- E2) ~ dv I~(so, v) e x p [ - ~ e ( S o + V ) ]  
0 

+ [2O'h%]I~ * [(Sh/So)I~O]. (30) 

The second term in (30) corresponds to the follow- 
ing situation (Fig. 3). The incident coherent  beam is 
scattered at (u, v) into the diffracted direction. We 
assume coherence to be lost over a distance of  order  
2%. From a point  within a distance 2% from (u, v) 
along the diffracted beam, the propagat ion is incoher- 
ent. We notice that 

(Sh/So)Ig(So, Sh) ,0 = I0 (Sh, SO), 

which corresponds to an interchange of incident and 
diffracted directions. I~°( Sh -- V, So-- U) corresponds to 
a diffracted beam at M originating from a unit 
intensity in the diffracted direction at (u, v). 

The first term in (30) corresponds to the case where 
a coherent beam in the incident direction reaches 
raM, is scattered and cannot  be rescattered, thus 
simply propagat ing in the diffracted direction. 

We notice that 2% is the apparent  coherence length 
in (29) and (30); this cannot  be guessed from the 
Takagi -Taupin  equations.  It involves the parameter  
F, and this difficult part  of the theory will be discussed 
in detail in a forthcoming paper. 

II.6. Integrated intensity-case o f  a parallel plate 

It has been shown (Kato,  1976; Becker, 1977) that 
the integrated intensity for an extended incident beam 
can be easily obtained from the intensity correspond- 
ing to a point  source. 

I (m) denotes the intensity at m from a point  source 
at S, the beam exiting at M. Remember  that the pair 
(S, M)  is unambiguously  defined by the point  m 
inside the crystal. The integrated power in the 
reflected beam, P, is given by 

P = [ h / s i n ( 2 0 ) ] ~  l (m)dv , , , ,  (31) 
t) 

where 
c i i tO i l  i2 

l ( m ) =  lh + lh, Ih = Ih + lh + lh . 

Thus 

p = pc + pi, pi = piO + m ' (32) 

S 

M ~ M 

Fig. 2. Transformation of coherent diffracted into incoherent Fig. 3. Transformation of coherent incident into incoherent 
process, at point (u, v). process, at point (u, v). 
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where m corresponds to the mixed components I~ 1 
and I~, 2. 

The calculation of (31) is done by numerical 
integration for a crystal of general shape, but an 
analytical solution can be obtained for a parallel plate 
in transmission geometry. 

As the detailed integration of (31) is quite similar 
to Kb, it will not be repeated here. Our values for pc 
and piO are equivalent to Kato's result. However, the 
value of m turns out to be rather different. For a 
parallel plate, we find 

pil • , r ( 2 )  
= (4/7h)~W h , (33) 

where M(h 2) is a quantity defined by Kato (Kb, 
equation 19d) and 

p n =  (4/7o)M(l)+ P". (34) 

M(h 1) is given in Kb, equation (19c) and p,i corre- 
sponds to a term not included by Kato. With Kato's 
notation, 

P " =  2E2(1 - E2) K 2~'Q[ 7o(707h)'/2] - '  

X {exp [ - ( / ~ r -  N),]  • Lo),. (35) 

Finally, in symmetrical Laue cases, the mixed power is 

m=E(1-E2)Hh{½(ml+m2) -n2}  (36) 

to be compared with Kb equation (36b). 
We have checked this difference by three methods: 

analytical integration, numerical calculation and 
integration by the procedure developed by Kato. 

Equations (33) and (34) summarize the 
modifications from Kato's original solution in the 
case of a parallel plate. Similar modifications, to be 
incorporated in a solution for a crystal of general 
shape, will be given in a forthcoming publication. 

Let us finally discuss the influence of this 
modification on the integrated power in the diffracted 
beam. In Fig. 4 various components are plotted, for 

a non-absorbing case, and with the conditi6ns used 
by Kato [E = 0-9, r / A  = 0.1], versus 2 (T /A) ,  where 
T is the effective crystal thickness, for a non- 
absorbing case. 

The mixed component m is increased by a factor 
of 4, compared with the original value mr (see also 
Fig. 3 in Kb). The consequence is a much larger 
contribution of incoherence even for crystals of high 
long-range perfection (high E). 

In Fig. 5, we give the same plot for E = 0.1, r /A  = 
0.1 and though the same qualitative change occurs, 
the effect of the mixed component remains small. The 
smallness of the modification for the case of E,~ 1 
does not in fact mean that (6) and (9) in their present 
form are well adapted to this situation. 

Thus, we expect a very delicate balance between 
coherent and incoherent components in the case of 
crystals with a high degree of perfection, i.e. for severe 
primary extinction effects. 

We will discuss the case of silicon in the next 
section. 

III. Application to silicon crystals with 
high degree of perfection 

III.1. Experimental and original analysis 

Olekhnovich et al. (1983) have measured diffracted 
power from various parallel plates of silicon, using 
Cu Ka radiation, with samples of various dislocation 
densities. They worked in the symmetrical Laue 
geometry and varied the apparent thickness by rotat- 
ing the sample around the reciprocal-lattice vector. 

These authors used samples with low dislocation 
density: Nd ---- 30 mm -2 for sample I, Nd = 100 mm -2 
for sample II, and also samples with high dislocation 
density (Nd > 5000 mm-2). In the present study, we 
shall discuss samples I and II, for which primary 
extinction is important. 

P 3'0: 

2 . 5  ¸ 

2"0- 

1 '5 '  

I ' 0  

0 - 5  

0.0 

m 

• "'"' .  P ' ( E = I )  

"""'" "'.....'" ...... p ,  .... 

~ . . . . . - ~ . ; , , , , , .  . . . . . . . . . . . . . . . . . .  : . . . . . . . .  , : ,  

5 10 1'5 i 0  25 30 

2 ( T / A )  

Fig. 4. Diffracted power (divided by Hh, non-absorbing case) as 
a function of 2(T/A), for E =0.9, r/A--0.1. 

30 ¸ 

2.0' 

04) 

. . . "  ,o 
. . . . ' "  P it; o) 

.... 

..- P *0 

5 10 15 20 25 30 

2 ( T / A )  

Fig. 5. Diffracted power (divided by H for non-absorbing case) 
as a function of 2(T/A), for E =0.1, ~/A =0.1. 
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If t is the effective thickness of the plate in the 
plane defined by the incident and diffracted beams, 
the optical length is T = t /cos 0. 

For sample II, Olekhnovich et al. results for the 
333 reflection are shown in Fig. 6, where the 'reduced 
intensity' is plotted versus A = T~ A. Curve (1) corre- 
sponds to experimental points, and curve (2) to the 
best agreement with Kato's theory. The 'reduced 
theoretical intensity' is defined as 

R~th= 2A(Pth/Pk), (37) 

where Pk is the kinematical diffracted power and Pth 
is the theoretical diffracted power as defined in (31). 
This definition of Rth is such that Rth-~ 1 for a large 
perfect crystal (dynamical limit). Rr,h corresponds to 
curve (2). Absorption, anomalous Bormann absorp- 
tion and anomalous scattering play a significant role 
in this study. 

Because of the smallness of incoherent and mixed 
components in Kato's expression, Olekhnovich et al. 
assumed that only the coherent component is affected 
by anomalous scattering and absorption: they correc- 
ted for it using a method proposed by Kato (1968). 
As a consequence, the experimental points on curve 
(1) of Fig. 6 correspond to 

Rrexp=(2A/Pk)[Pexp-Pa,] ,  (38) 

where Pexp is the experimental power and Pan is the 
calculated correction for the anomalous effect in the 
coherent part. 

We observe that oscillations are highly visible, 
attesting the high E value. In fact, the best fit was 
found by Olekhnovich et al. for E - 0 . 9 7  and "r/A 
0.20. We can estimate the accuracy of the fit by 

1 ~k IRrth-Rrexp[ 
r /=  -~ Rr exp 

in which N is the number of experimental points. 
Olekhnovich et al.'s study leads to r / -  25%. Kato's 
original theory strongly underestimates reduced 
intensities, in particular for large values of A. The 
strong deviation of R from 1 for large A shows that 

3 

(1) , ( 2 ) ~ / -  
2. 

1'0 i0 3'0 A 

Fig. 6. Reduced intensity for the 333 reflection of Si, as a function 
of A. Curve (1) experimental points; curve (2) best fit from 
Kato's theory. (From Olekhnovich et al., 1983.) 

even slight distortions rapidly destroy coherence. 
Olekhnovich et al. also varied F in the definition of 
re (equations 11 and 12) but this leads only to a very 
small improvement. 

III.2. Modified analysis 

We reconsidered this analysis with the 
modifications in § II of this paper. A proper integra- 
tion of propagation equations leads to a strong 
increase of the mixed component for large A, even 
in the case of high E values. One can no longer 
neglect anomalous effects in the mixed component. 

Thus, we directly introduce anomalous dispersion 
in the equations for the diffracted power replacing 
the atomic scattering factorfo b y f = f o +  ~f '+ iSf'. ~f' 
and 8f '  are taken respectively as 0.244 and 0.33 
(International Tables for X-ray Crystallography, 1974). 

Fig. 7 shows the influence of anomalous scattering 
on the 333 reflection intensity. This example corre- 
sponds to E = 0.97 and r / A  = 0.20. In curve (1), the 
Borrmann effect is totally neglected ( f= fo ) .  In curve 
(2), only the coherent component is corrected for the 
Borrmann effect, while curve (3) corresponds to the 
correct calculation, where all components include 
anomalous contributions. The effect is very significant 
for large values of A. 

Fig. 8 shows our results for the 333 reflection and 
sample I I. As experimental values we take y = Pexp/Pk 
measured by Olekhnovich et al. (Fig. 2 from 
Olekhnovich et al., 1983). In Fig. 8, we plot Y = 2Ay 
as a function of A. Curve (1) represents the experi- 
mental points. Curve (2) corresponds to the least- 
squares fit that led to E = 0.91 and r / A  = 0.0134. The 
agreement factor r/ is now 7.8%. A variation of F 
even leads to r/--- 6"7%. We observe a very significant 
improvement if we compare this with Fig. 6. 

In Fig. 9 we present similar results for sample I. 
The optimization leads to E = 0.95 and r / A  = 0-011. 
rl is 4-7% and reduces to 4% if F is varied. 

I'0 20 3'0 A • 

Fig. 7. Influence of anomalous scattering on the reduced intensity, 
for E =0.97, r/A =0.20. Curve (1) neglect of Borrmann effect; 
curve (2) Borrmann effect only in the coherent component; curve 
(3) complete calculation. 
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111.3. Conclusions 

We conclude that Kato's theory is well adapted to 
crystals of high long-range-order perfection. One can 
well reproduce the oscillations for small A as well as 
the observed increase of the intensity for large A. 

Anomalous scattering can be included in the 
theory. The importance of mixed components to the 
diffracted intensity is clearly demonstrated. 
Moreover, for cases of low dislocation density, it 
would be incorrect to consider that extinction is only 
of primary type. For instance, curve (3) of Figs. 8 
and 9 shows the behaviour of a pure primary-extinc- 
tion correction: both the pseudoperiod of the oscilla- 
tions and the average slope are wrong: the agreement 
factor r/ would be 17% for sample II and 11% for 
sample I. 

IV. Concluding remarks 

IV.1. Kato" s approach 

We have seen that Kato's approach fills the gap 
between pure dynamical theory and 'secondary- 
extinction theory'. For crystals with a very low dislo- 
cation density, one cannot apply pure dynamical 
theory. 'Mixed terms' which represent the occurrence 
of incoherence somewhere in the bulk of the sample 
have to be taken into account, in additional to the 
purely coherent and purely incoherent components. 

The influence of the anomalous-scattering effect is 
very important. 

Our first conclusion is that, with a careful solution 
of Kato's statistical propagation equations, extinction 
effects for highly perfect crystals can be reproduced. 
Experience with other examples is needed. The 
integration of (6) and (9) has been performed for 

crystals of general convex shape and this will be 
the object of a forthcoming publication, where the 
solution will be given in terms of a programmable 
expression where the parameters for a least-squarrs 
routine are E and r (in fact their h, k, I dependence). 

IV.2. Problems with new formulation 

However, there are some difficulties with the pres- 
ent formulation of (6) and (9); and especially with 
the incoherent part of the intensity. We recast the 
effective correlation length as 

re=(l-E2)r+ E2F, (39) 

where F is the correlation length of the incoherent 
part of the beams. Obviously, F is not independent 
of r and A. Kato discusses this point and proposes 
that F = A / E ,  which leads to 

% = (1 - E 2 ) r +  EA .  (40) 

If the crystal is composed of completely randomly 
distributed perfect blocks (E ~ 0 and r +  0), Takagi- 
Taupin equations can be directly solved, leading to 

Ih = IKh I={ EZlJo[2KE(sosh)l/2]12 + ( 1 - E2)}. 

Integration of (9) would lead to this result only if 
re ~ O, which means F ~ 0, in contradiction with (40). 

The only way to improve the theory is to make an 
assumption concerning the shape of the correlation 
function g(z) and to try to derive a plausible 
expression for re and the propagation equation for 
the incoherent part of the beam: see for instance 
Kulda (1984). 

Yr 

8 - -  

6- -  

,.-...'~ 

' '  ~ '  I ' ' ' ' I . . . .  I . . . .  

10 20 30 A 

Fig. 8. Reduced  extinction y as a function of  A, for sample  II. 
Curve (1) experimental  points (+);  curve (2) best least-squares 
fit ( ); curve (3) pr imary extinction ( . . . . . .  ). 

/ 

. . . .  I . . . .  ' 1  . . . .  I . . . .  
A 

1 0  2O 3 0  

Fig. 9. Reduced  extinction y as a function of  A, for sample  I. 
Curve (1) experimental  points (+) ;  curve (2) best least-squares 
fit ( ); curve (3) pr imary extinction ( . . . . . .  ). 
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A P P E N D I X  A 

We want to prove that 

/~ [ f*  g] = [ £ f ]  * g = f * [ £ g ] .  

Let 

h ( x , y ) = f  * g = i  du I d v f ( u ,  v ) g ( x - u , y - v )  
0 0 

£(h)=~'2iduldvh(u,v). 
0 0 

If  h is expanded  into its components  f and g: 

£ (h )  = ~ 2  i du i d u ' l d v  i d v ' f ( u ' ,  v') 
0 0 0 0 

xg(u-u', v-v'), 
we change variables (u, u') into (u', ~ = u - u'), (v, v') 
into (v', 77 = v - v') and get 

£(h)=~-2idu'ldv'f(u',v ') 
0 0 

x - u  y - v  

x J' d~" j' d ' r /g(~,r/)  
0 0 

: i du'  I dv'  f ( u ' ,  v ' ) f_ ,g(x-u ' ,  y -  v') 
0 0 

: f *  [£g ]  

: [Lf l*  g. 
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The Use  of  Molecu lar -Rep lacement  Phases  for the Refinement of  the H v m a n  
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Abstract 

The structure of human rhinovirus 14 has been 
refined, by the method of  restrained least squares,  to 
an R factor of  0.16 for various random samples 
between 6 and 3 A, resolution with F >  3o-(F). As a 
first step the non-crystal lographic symmetry param- 
eters were optimized using the initial atomic model 
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Medicine (CABM) and Department of Chemistry, Rutgers Univer- 
sity, Piscataway, New Jersey 08855-0759, USA. 

0108-7673/88/030270-13 $03.00 

in a rigid-body refinement procedure. Phase determi- 
nation by the molecular-replacement  phase extension 
and refinement procedure  was continued to 2.94 A, 
resolution, employing the improved non-crystallo- 
graphic symmetry operators.  The resultant structure- 
factor phases and weights, together with the measured 
ampli tudes,  constituted the X-ray observations used 
in the restrained refinement. The Hendr ickson-  
Konnert  p rogram system [Konner t  & Hendr ickson 
(1980). Acta Cryst. A36, 344-350] was modified to 
incorporate non-crystal lographic symmetry con- 
straints and structure-factor  phases as observations.  
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